Practice Makes Perfect: A Study of Digital Twin Technology for Assembly and Problem-solving using Lunar Surface Telerobotics
作者: Xavier O'Keefe, Katy McCutchan, Alexis Muniz, Jack Burns, Daniel Szafir
分类: cs.RO, astro-ph.EP, astro-ph.IM
发布日期: 2025-05-19
💡 一句话要点
提出虚拟现实数字双胞胎系统以提升月球表面遥控机器人操作训练
🎯 匹配领域: 支柱一:机器人控制 (Robot Control)
关键词: 数字双胞胎 虚拟现实 遥控机器人 太空探索 人机交互 任务训练 认知负荷 情境意识
📋 核心要点
- 现有的机器人系统在极端环境下的自主操作能力有限,导致需要人类的遥控和监督,增加了任务的复杂性和风险。
- 本研究提出了一种虚拟现实数字双胞胎系统,旨在通过模拟环境来训练人类操作员,提高遥控机器人的效率和准确性。
- 实验结果表明,使用数字双胞胎系统的操作员在任务完成时间和错误率上均有显著改善,同时认知负荷和情境意识也得到了提升。
📝 摘要(中文)
本研究探讨了数字双胞胎技术在月球表面遥控机器人组装和问题解决中的应用。随着人类在太空活动的增加,机器人在极端环境下的自主操作面临挑战,因此需要人类的遥控和监督。我们设计并评估了一个虚拟现实数字双胞胎系统,以训练人类操作员在模拟月球任务中遥控机械臂机器人。实验结果显示,使用数字双胞胎系统的操作员在任务完成时间上减少了28%,不可恢复错误减少了85%,同时认知负荷降低,情境意识提高。
🔬 方法详解
问题定义:本研究旨在解决机器人在月球表面操作时的遥控训练不足问题。现有的物理模拟环境如JPL的火星院子昂贵且难以获得,限制了操作员的训练机会。
核心思路:通过构建一个虚拟现实数字双胞胎系统,提供一个可重复使用的训练平台,使操作员能够在安全的环境中进行遥控训练和实时问题解决。
技术框架:系统包括虚拟现实环境、用户交互界面和机器人控制模块。用户通过VR设备与虚拟环境互动,模拟真实的月球任务场景。
关键创新:该研究的核心创新在于将虚拟现实技术与数字双胞胎概念结合,提供了一种低成本、高效的训练方式,显著提升了操作员的任务执行能力。
关键设计:系统设计中考虑了用户的交互体验,采用了适应性训练模块,实时反馈机制,以及优化的控制算法,以降低认知负荷并提高任务完成效率。
📊 实验亮点
实验结果显示,使用数字双胞胎系统的操作员在任务完成时间上减少了28%,不可恢复错误减少了85%。此外,操作员的认知负荷显著降低,情境意识提高,表明该系统在训练效果上具有显著优势。
🎯 应用场景
该研究的潜在应用领域包括太空探索、机器人遥控训练以及其他需要高风险操作的环境。通过提升操作员的训练效果,能够有效减少任务失败的风险,提高任务成功率,具有重要的实际价值和未来影响。
📄 摘要(原文)
Robotic systems that can traverse planetary or lunar surfaces to collect environmental data and perform physical manipulation tasks, such as assembling equipment or conducting mining operations, are envisioned to form the backbone of future human activities in space. However, the environmental conditions in which these robots, or "rovers," operate present challenges toward achieving fully autonomous solutions, meaning that rover missions will require some degree of human teleoperation or supervision for the foreseeable future. As a result, human operators require training to successfully direct rovers and avoid costly errors or mission failures, as well as the ability to recover from any issues that arise on the fly during mission activities. While analog environments, such as JPL's Mars Yard, can help with such training by simulating surface environments in the real world, access to such resources may be rare and expensive. As an alternative or supplement to such physical analogs, we explore the design and evaluation of a virtual reality digital twin system to train human teleoperation of robotic rovers with mechanical arms for space mission activities. We conducted an experiment with 24 human operators to investigate how our digital twin system can support human teleoperation of rovers in both pre-mission training and in real-time problem solving in a mock lunar mission in which users directed a physical rover in the context of deploying dipole radio antennas. We found that operators who first trained with the digital twin showed a 28% decrease in mission completion time, an 85% decrease in unrecoverable errors, as well as improved mental markers, including decreased cognitive load and increased situation awareness.