HKT: A Biologically Inspired Framework for Modular Hereditary Knowledge Transfer in Neural Networks
作者: Yanick Chistian Tchenko, Felix Mohr, Hicham Hadj Abdelkader, Hedi Tabia
分类: cs.LG
发布日期: 2025-08-13
💡 一句话要点
提出HKT框架以优化小型神经网络的知识传递
🎯 匹配领域: 支柱二:RL算法与架构 (RL & Architecture) 支柱三:空间感知与语义 (Perception & Semantics)
关键词: 遗传知识转移 神经网络 知识蒸馏 生物启发 特征提取 模型优化 视觉任务 资源受限环境
📋 核心要点
- 现有神经网络方法在提升性能时,往往牺牲了模型的可集成性和效率,导致小型模型难以有效利用知识。
- 本文提出遗传知识转移(HKT)框架,通过模仿生物遗传机制,优化小型模型的知识传递,增强其任务能力。
- HKT在光流、图像分类和语义分割等多项视觉任务中表现优异,显著超越传统蒸馏方法,提升了子模型的性能。
📝 摘要(中文)
在神经网络研究中,模型性能通常随着深度和容量的增加而提升,但这往往会影响可集成性和效率。本文提出了一种通过结构化知识继承来增强小型可部署模型能力的策略,称为遗传知识转移(HKT)。HKT借鉴生物遗传机制,通过提取、转移和混合三个生物启发的组件,选择性地将任务相关特征从大型预训练父网络传递到小型子模型。与传统知识蒸馏不同,HKT采用多阶段特征转移过程,确保了继承和本地表示的对齐与选择性。实验结果表明,HKT在多个视觉任务中显著提升了子模型的性能,同时保持其紧凑性。
🔬 方法详解
问题定义:本文旨在解决小型神经网络在性能和效率上的矛盾,现有方法如知识蒸馏无法有效利用大型模型的知识,导致小型模型性能不足。
核心思路:HKT框架通过模仿生物遗传机制,采用提取、转移和混合的方式,选择性地将大型预训练模型的特征传递给小型模型,从而提升其性能。
技术框架:HKT的整体架构包括三个主要模块:特征提取(Extraction)、特征转移(Transfer)和特征混合(Mixture),并引入遗传注意力机制(GA)来优化继承和本地表示的整合。
关键创新:HKT的核心创新在于其生物启发的特征转移过程,区别于传统的知识蒸馏方法,HKT允许选择性和多阶段的特征传递,增强了模型的灵活性和性能。
关键设计:HKT框架中的遗传注意力机制确保了继承特征与本地特征的有效整合,具体参数设置和损失函数设计尚未详细披露,需进一步研究。
📊 实验亮点
实验结果显示,HKT在光流、图像分类(CIFAR-10)和语义分割(LiTS)等任务中,子模型的性能显著提升,超越传统蒸馏方法,具体提升幅度达到了XX%(具体数据需查阅原文)。
🎯 应用场景
HKT框架具有广泛的应用潜力,尤其适用于资源受限的环境中,如移动设备和嵌入式系统。通过优化小型神经网络的性能,HKT可以在图像处理、自动驾驶、医疗影像分析等领域发挥重要作用,推动智能应用的发展。
📄 摘要(原文)
A prevailing trend in neural network research suggests that model performance improves with increasing depth and capacity - often at the cost of integrability and efficiency. In this paper, we propose a strategy to optimize small, deployable models by enhancing their capabilities through structured knowledge inheritance. We introduce Hereditary Knowledge Transfer (HKT), a biologically inspired framework for modular and selective transfer of task-relevant features from a larger, pretrained parent network to a smaller child model. Unlike standard knowledge distillation, which enforces uniform imitation of teacher outputs, HKT draws inspiration from biological inheritance mechanisms - such as memory RNA transfer in planarians - to guide a multi-stage process of feature transfer. Neural network blocks are treated as functional carriers, and knowledge is transmitted through three biologically motivated components: Extraction, Transfer, and Mixture (ETM). A novel Genetic Attention (GA) mechanism governs the integration of inherited and native representations, ensuring both alignment and selectivity. We evaluate HKT across diverse vision tasks, including optical flow (Sintel, KITTI), image classification (CIFAR-10), and semantic segmentation (LiTS), demonstrating that it significantly improves child model performance while preserving its compactness. The results show that HKT consistently outperforms conventional distillation approaches, offering a general-purpose, interpretable, and scalable solution for deploying high-performance neural networks in resource-constrained environments.