SUMO: Subspace-Aware Moment-Orthogonalization for Accelerating Memory-Efficient LLM Training

📄 arXiv: 2505.24749v2 📥 PDF

作者: Yehonathan Refael, Guy Smorodinsky, Tom Tirer, Ofir Lindenbaum

分类: cs.LG, cs.CL, math.OC

发布日期: 2025-05-30 (更新: 2025-10-25)

期刊: The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)


💡 一句话要点

提出SUMO以加速内存高效的大型语言模型训练

🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)

关键词: 大型语言模型 低秩优化 动量正交化 奇异值分解 收敛加速 内存效率 深度学习

📋 核心要点

  1. 现有的低秩梯度优化方法虽然提高了内存效率,但在收敛速度上表现不佳,尤其是在深度网络的高度各向异性损失景观中。
  2. SUMO通过在动态低维子空间中使用精确的奇异值分解进行动量正交化,优化了最陡下降步骤,从而提高了收敛速度。
  3. 实验结果表明,SUMO相比于现有方法,收敛速度显著加快,稳定性增强,性能提升,同时内存需求减少了20%。

📝 摘要(中文)

低秩梯度优化方法显著提高了大型语言模型(LLMs)训练的内存效率,使得在受限硬件上进行操作成为可能,而不牺牲性能。然而,这些方法主要关注内存节省,往往忽视了收敛加速的潜力。本文提出了SUMO(子空间感知的动量正交化),该优化器利用精确的奇异值分解(SVD)在动态适应的低维子空间中进行动量正交化,从而实现规范诱导的最陡下降优化步骤。通过明确对齐优化步骤与损失景观的谱特性,SUMO有效减轻了常用方法(如Newton-Schulz正交化近似)所带来的近似误差。理论上,我们建立了这些近似误差的上界,并证明其依赖于动量的条件数。实验证明,SUMO在加速收敛、增强稳定性、提高性能和减少内存需求方面相比于最先进的方法有高达20%的提升。

🔬 方法详解

问题定义:本文旨在解决现有低秩梯度优化方法在大型语言模型训练中收敛速度不足的问题。这些方法虽然节省内存,但在高度各向异性的损失景观中表现不佳。

核心思路:SUMO的核心思想是利用精确的奇异值分解(SVD)进行动量正交化,确保优化步骤与损失景观的谱特性对齐,从而加速收敛并减少近似误差。

技术框架:SUMO的整体架构包括动态适应的低维子空间和基于SVD的动量正交化模块。优化过程通过规范诱导的最陡下降步骤进行,确保每一步都能有效利用损失景观的信息。

关键创新:SUMO的主要创新在于引入了精确的SVD正交化,克服了传统方法中Newton-Schulz近似带来的误差,从而实现了更高效的收敛。

关键设计:在参数设置上,SUMO动态调整低维子空间的维度,并使用特定的损失函数来引导优化过程,确保在训练大型语言模型时的高效性和稳定性。

📊 实验亮点

实验结果显示,SUMO在加速收敛方面表现优异,相比于最先进的方法,收敛速度提高了显著,稳定性增强,性能提升,同时内存需求减少了高达20%。

🎯 应用场景

该研究的潜在应用领域包括大型语言模型的训练和优化,尤其是在资源受限的环境中。SUMO的设计可以为未来的深度学习模型提供更高效的训练策略,降低内存需求,同时提升模型性能,具有重要的实际价值和影响。

📄 摘要(原文)

Low-rank gradient-based optimization methods have significantly improved memory efficiency during the training of large language models (LLMs), enabling operations within constrained hardware without sacrificing performance. However, these methods primarily emphasize memory savings, often overlooking potential acceleration in convergence due to their reliance on standard isotropic steepest descent techniques, which can perform suboptimally in the highly anisotropic landscapes typical of deep networks, particularly LLMs. In this paper, we propose SUMO (Subspace-Aware Moment-Orthogonalization), an optimizer that employs exact singular value decomposition (SVD) for moment orthogonalization within a dynamically adapted low-dimensional subspace, enabling norm-inducing steepest descent optimization steps. By explicitly aligning optimization steps with the spectral characteristics of the loss landscape, SUMO effectively mitigates approximation errors associated with commonly used methods like Newton-Schulz orthogonalization approximation. We theoretically establish an upper bound on these approximation errors, proving their dependence on the condition numbers of moments, conditions we analytically demonstrate are encountered during LLM training. Furthermore, we both theoretically and empirically illustrate that exact orthogonalization via SVD substantially improves convergence rates while reducing overall complexity. Empirical evaluations confirm that SUMO accelerates convergence, enhances stability, improves performance, and reduces memory requirements by up to 20% compared to state-of-the-art methods.