COFFEE: A Shadow-Resilient Real-Time Pose Estimator for Unknown Tumbling Asteroids using Sparse Neural Networks

📄 arXiv: 2508.03132v1 📥 PDF

作者: Arion Zimmermann, Soon-Jo Chung, Fred Hadaegh

分类: cs.CV, cs.RO

发布日期: 2025-08-05

备注: in Proc. 75th Int. Astronautical Congress (IAC-24), Milan, Italy, Oct. 2024


💡 一句话要点

提出COFFEE以解决未知翻滚小行星的实时姿态估计问题

🎯 匹配领域: 支柱六:视频提取与匹配 (Video Extraction)

关键词: 姿态估计 小行星探测 深度学习 稀疏神经网络 图神经网络 实时处理 航天技术

📋 核心要点

  1. 现有姿态估计方法在实时性和准确性之间存在权衡,尤其在处理翻滚小行星时,阴影影响导致估计偏差。
  2. COFFEE框架通过结合太阳相位角信息,检测与阴影不变的稀疏特征,提升了姿态估计的准确性和实时性。
  3. 实验表明,COFFEE在合成数据和翻滚小行星的渲染上,姿态估计速度比现有深度学习方法快一个数量级,且无偏差。

📝 摘要(中文)

准确估计太空中未知物体的状态是一个关键挑战,涉及从跟踪太空垃圾到小天体形状估计等应用。现有方法如SIFT、ORB和AKAZE虽然实现了实时性,但姿态估计不准确,而现代深度学习方法虽然提供了更高质量的特征,但计算资源需求较高,难以在空间合格硬件上实现。此外,现有方法对物体表面高度不透明的自投影阴影缺乏鲁棒性。本文提出COFFEE(Celestial Occlusion Fast FEature Extractor),一种实时姿态估计框架,利用航天器上常见的太阳跟踪传感器提供的太阳相位角信息,通过将显著轮廓与其投影阴影关联,检测出一组稀疏特征,且对阴影运动不变。稀疏神经网络与基于注意力的图神经网络特征匹配模型联合训练,提供连续帧之间的对应关系。实验结果表明,该方法无偏差、比经典姿态估计管道更准确,并且在合成数据和翻滚小行星Apophis的渲染上速度比其他最先进的深度学习管道快一个数量级。

🔬 方法详解

问题定义:本文解决的是在未知翻滚小行星的实时姿态估计中,现有方法由于阴影影响而导致的估计偏差问题。现有的经典方法和深度学习方法在准确性和计算资源上均存在不足。

核心思路:COFFEE框架的核心思路是利用太阳相位角信息,结合显著轮廓与其投影阴影的关系,检测出对阴影运动不变的稀疏特征,从而提高姿态估计的准确性。

技术框架:该框架包括两个主要模块:首先是稀疏特征提取模块,通过太阳相位角信息识别特征;其次是特征匹配模块,使用稀疏神经网络和图神经网络进行特征匹配,提供连续帧之间的对应关系。

关键创新:COFFEE的主要创新在于其对阴影的鲁棒性,利用太阳相位角信息和稀疏特征提取,克服了传统方法在阴影影响下的偏差问题。

关键设计:在网络结构上,稀疏神经网络与图神经网络的结合是关键设计,损失函数的选择也确保了特征匹配的准确性和效率。

📊 实验亮点

实验结果显示,COFFEE在合成数据和翻滚小行星Apophis的渲染上,姿态估计速度比现有最先进的深度学习方法快一个数量级,且无偏差,显著提升了姿态估计的准确性和实时性。

🎯 应用场景

该研究的潜在应用领域包括太空探测、卫星导航和小行星采矿等。通过提高对翻滚小行星的姿态估计能力,能够有效支持未来的太空任务,降低任务失败的风险,提升航天器的自主导航能力。

📄 摘要(原文)

The accurate state estimation of unknown bodies in space is a critical challenge with applications ranging from the tracking of space debris to the shape estimation of small bodies. A necessary enabler to this capability is to find and track features on a continuous stream of images. Existing methods, such as SIFT, ORB and AKAZE, achieve real-time but inaccurate pose estimates, whereas modern deep learning methods yield higher quality features at the cost of more demanding computational resources which might not be available on space-qualified hardware. Additionally, both classical and data-driven methods are not robust to the highly opaque self-cast shadows on the object of interest. We show that, as the target body rotates, these shadows may lead to large biases in the resulting pose estimates. For these objects, a bias in the real-time pose estimation algorithm may mislead the spacecraft's state estimator and cause a mission failure, especially if the body undergoes a chaotic tumbling motion. We present COFFEE, the Celestial Occlusion Fast FEature Extractor, a real-time pose estimation framework for asteroids designed to leverage prior information on the sun phase angle given by sun-tracking sensors commonly available onboard spacecraft. By associating salient contours to their projected shadows, a sparse set of features are detected, invariant to the motion of the shadows. A Sparse Neural Network followed by an attention-based Graph Neural Network feature matching model are then jointly trained to provide a set of correspondences between successive frames. The resulting pose estimation pipeline is found to be bias-free, more accurate than classical pose estimation pipelines and an order of magnitude faster than other state-of-the-art deep learning pipelines on synthetic data as well as on renderings of the tumbling asteroid Apophis.