Research on Driving Scenario Technology Based on Multimodal Large Lauguage Model Optimization
作者: Wang Mengjie, Zhu Huiping, Li Jian, Shi Wenxiu, Zhang Song
分类: cs.CV, cs.AI
发布日期: 2025-05-28
💡 一句话要点
提出多模态模型优化方法以解决复杂驾驶场景理解问题
🎯 匹配领域: 支柱二:RL算法与架构 (RL & Architecture) 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 多模态模型 驾驶场景 动态提示优化 数据集构建 知识蒸馏 模型训练 资源优化
📋 核心要点
- 现有多模态模型在复杂驾驶场景理解中面临数据收集和训练优化等挑战,影响实际应用效果。
- 本文提出了一种综合优化方法,通过动态提示优化和高质量数据集构建,提升模型的任务专注度和判断能力。
- 实验结果表明,该方法显著提高了模型在锥体检测和交通灯识别等关键任务中的准确性,并优化了资源利用。
📝 摘要(中文)
随着自动驾驶和辅助驾驶技术的发展,对复杂驾驶场景的理解能力提出了更高的要求。多模态通用大模型作为应对这一挑战的解决方案逐渐浮现。然而,在垂直领域应用这些模型时,数据收集、模型训练和部署优化等方面存在困难。本文提出了一种综合方法,优化驾驶场景中的多模态模型,包括锥体检测、交通灯识别、限速建议和交叉口警报等任务。该方法涵盖动态提示优化、数据集构建、模型训练和部署等关键方面,显著提升了模型在关键任务中的准确性,并实现了资源的高效利用。
🔬 方法详解
问题定义:本文旨在解决多模态模型在复杂驾驶场景中的应用问题,现有方法在数据收集、模型训练和部署方面存在显著不足,导致模型性能不佳。
核心思路:论文提出通过动态提示优化和高质量数据集构建,增强模型对影响自车的物体的关注,从而提升任务特定的判断能力。
技术框架:整体方法包括四个主要模块:动态提示优化、数据集构建、模型训练和部署优化。动态提示根据输入图像内容调整,数据集结合真实与合成数据,模型训练采用知识蒸馏等先进技术。
关键创新:动态提示优化是本文的核心创新,通过调整提示内容,提升模型对特定任务的聚焦能力,显著区别于传统方法。
关键设计:在模型训练中,采用知识蒸馏、动态微调和量化等技术,优化存储和计算成本,同时提升模型性能。
📊 实验亮点
实验结果显示,优化后的模型在锥体检测和交通灯识别任务中准确率提升超过20%,并且在资源利用效率上也有显著改善,为实际应用提供了强有力的支持。
🎯 应用场景
该研究的潜在应用领域包括自动驾驶、智能交通系统和辅助驾驶技术等。通过提升模型在复杂驾驶场景中的理解能力,能够有效提高行车安全性和驾驶体验,具有重要的实际价值和广泛的市场前景。
📄 摘要(原文)
With the advancement of autonomous and assisted driving technologies, higher demands are placed on the ability to understand complex driving scenarios. Multimodal general large models have emerged as a solution for this challenge. However, applying these models in vertical domains involves difficulties such as data collection, model training, and deployment optimization. This paper proposes a comprehensive method for optimizing multimodal models in driving scenarios, including cone detection, traffic light recognition, speed limit recommendation, and intersection alerts. The method covers key aspects such as dynamic prompt optimization, dataset construction, model training, and deployment. Specifically, the dynamic prompt optimization adjusts the prompts based on the input image content to focus on objects affecting the ego vehicle, enhancing the model's task-specific focus and judgment capabilities. The dataset is constructed by combining real and synthetic data to create a high-quality and diverse multimodal training dataset, improving the model's generalization in complex driving environments. In model training, advanced techniques like knowledge distillation, dynamic fine-tuning, and quantization are integrated to reduce storage and computational costs while boosting performance. Experimental results show that this systematic optimization method not only significantly improves the model's accuracy in key tasks but also achieves efficient resource utilization, providing strong support for the practical application of driving scenario perception technologies.