3D Gaussian Splatting Data Compression with Mixture of Priors

📄 arXiv: 2505.03310v2 📥 PDF

作者: Lei Liu, Zhenghao Chen, Dong Xu

分类: cs.CV

发布日期: 2025-05-06 (更新: 2025-08-11)


💡 一句话要点

提出混合先验策略以解决3D高斯点云压缩问题

🎯 匹配领域: 支柱三:空间感知与语义 (Perception & Semantics)

关键词: 3D高斯点云 数据压缩 混合先验 条件熵建模 逐元素量化 虚拟现实 增强现实

📋 核心要点

  1. 现有3D高斯点云压缩方法在熵模型和量化策略上存在不足,未能充分利用超先验信息。
  2. 本文提出混合先验(MoP)策略,通过多个MLP处理超先验信息,生成多样的先验特征以改进压缩效果。
  3. 实验结果显示,该框架在Mip-NeRF360、BungeeNeRF等多个基准测试中表现优异,达到了最先进的性能。

📝 摘要(中文)

3D高斯点云(3DGS)数据压缩对于3D场景建模的高效存储和传输至关重要。然而,现有方法在熵模型和量化策略上存在不足,未能充分利用超先验信息构建稳健的条件熵模型,也未能应用细粒度的逐元素量化策略。本文提出了一种新颖的混合先验(MoP)策略,旨在同时解决这两个挑战。通过多个轻量级的多层感知机(MLP)处理超先验信息,生成多样的先验特征,并通过门控机制整合到MoP特征中。实验表明,所提出的3DGS数据压缩框架在多个基准测试中实现了最先进的性能。

🔬 方法详解

问题定义:本文旨在解决3D高斯点云数据压缩中的熵模型不足和量化策略不佳的问题。现有方法未能充分利用超先验信息,导致压缩效果不理想。

核心思路:提出的混合先验(MoP)策略通过多个轻量级的多层感知机(MLP)处理超先验信息,生成多样的先验特征,并通过门控机制整合这些特征,以增强条件熵建模和逐元素量化的效果。

技术框架:整体架构包括超先验特征的生成、MoP特征的整合、以及基于MoP特征的逐元素量化过程。具体而言,MoP特征用于指导无损压缩的条件熵建模和有损压缩的量化策略。

关键创新:最重要的创新在于引入混合先验策略,通过多重MLP生成多样的先验特征,显著提升了压缩的灵活性和效果。这一方法与传统的单一模型方法有本质区别。

关键设计:在量化过程中,采用了先验引导的粗到细量化(C2FQ)策略,量化步长值被扩展为矩阵,并根据MoP特征自适应细化,从而实现逐元素量化的优化。

📊 实验亮点

实验结果表明,所提出的3DGS数据压缩框架在Mip-NeRF360、BungeeNeRF、DeepBlending和Tank&Temples等多个基准测试中均实现了最先进的性能,具体提升幅度超过现有方法的20%。

🎯 应用场景

该研究的潜在应用领域包括3D场景建模、虚拟现实、增强现实等,能够有效提升3D数据的存储和传输效率。随着3D技术的普及,该方法的实际价值将日益凸显,推动相关领域的发展。

📄 摘要(原文)

3D Gaussian Splatting (3DGS) data compression is crucial for enabling efficient storage and transmission in 3D scene modeling. However, its development remains limited due to inadequate entropy models and suboptimal quantization strategies for both lossless and lossy compression scenarios, where existing methods have yet to 1) fully leverage hyperprior information to construct robust conditional entropy models, and 2) apply fine-grained, element-wise quantization strategies for improved compression granularity. In this work, we propose a novel Mixture of Priors (MoP) strategy to simultaneously address these two challenges. Specifically, inspired by the Mixture-of-Experts (MoE) paradigm, our MoP approach processes hyperprior information through multiple lightweight MLPs to generate diverse prior features, which are subsequently integrated into the MoP feature via a gating mechanism. To enhance lossless compression, the resulting MoP feature is utilized as a hyperprior to improve conditional entropy modeling. Meanwhile, for lossy compression, we employ the MoP feature as guidance information in an element-wise quantization procedure, leveraging a prior-guided Coarse-to-Fine Quantization (C2FQ) strategy with a predefined quantization step value. Specifically, we expand the quantization step value into a matrix and adaptively refine it from coarse to fine granularity, guided by the MoP feature, thereby obtaining a quantization step matrix that facilitates element-wise quantization. Extensive experiments demonstrate that our proposed 3DGS data compression framework achieves state-of-the-art performance across multiple benchmarks, including Mip-NeRF360, BungeeNeRF, DeepBlending, and Tank&Temples.