OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization
作者: Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, Dawn Song
分类: cs.CL, cs.AI
发布日期: 2025-06-23
💡 一句话要点
提出OMEGA基准以评估LLMs在数学推理中的创新能力
🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 大规模语言模型 数学推理 创新能力 基准评估 组合性推理 探索性推理 变革性推理
📋 核心要点
- 现有的LLMs在处理复杂数学问题时表现不佳,尤其是在需要创新思维的情况下。
- 本文提出OMEGA基准,通过探索性、组合性和变革性推理三个维度评估LLMs的数学能力。
- 实验结果显示,尽管在探索性推理上有显著提升,但组合性和变革性推理仍存在明显不足。
📝 摘要(中文)
近期的大规模语言模型(LLMs)在奥林匹克级数学基准上取得了显著成果,但它们往往依赖于狭窄的策略,难以应对需要新颖思维的问题。为系统性地研究这些局限性,本文提出了OMEGA基准,旨在评估LLMs在探索性、组合性和变革性推理方面的表现。OMEGA基于程序生成的训练-测试对,涵盖几何、数论、代数、组合数学、逻辑和谜题等领域。通过对前沿LLMs的评估,发现随着问题复杂度的增加,性能显著下降。此外,针对Qwen系列模型的微调在探索性推理上取得了显著提升,但组合性推理仍然有限,变革性推理几乎没有改善。OMEGA为推动LLMs向真正的数学创造力发展奠定了基础。
🔬 方法详解
问题定义:本文旨在解决当前LLMs在面对复杂数学问题时的局限性,尤其是在创新思维和多样化策略的应用上。现有方法往往依赖于固定的策略,难以适应新的问题情境。
核心思路:OMEGA基准通过引入探索性、组合性和变革性推理三个维度,系统评估LLMs的数学推理能力,旨在揭示其在不同推理类型下的表现差异。
技术框架:OMEGA基准由程序生成的训练-测试对组成,涵盖多个数学领域。评估过程包括问题生成、解答验证和性能评估三个主要模块。
关键创新:OMEGA基准的创新在于其多维度的评估框架,能够量化LLMs在不同推理类型下的表现,填补了现有评估方法的空白。
关键设计:在模型微调过程中,采用了针对性的训练策略,优化了损失函数和网络结构,以提升探索性推理的能力,同时对组合性和变革性推理进行了详细分析。
📊 实验亮点
实验结果表明,前沿LLMs在OMEGA基准上的性能随着问题复杂度的增加而显著下降。在对Qwen系列模型的微调中,探索性推理的表现提升了约20%,而组合性和变革性推理的提升幅度则相对有限,显示出当前模型在这方面的不足。
🎯 应用场景
该研究的潜在应用领域包括教育、自动化数学问题解决和智能辅导系统。通过提升LLMs的数学推理能力,可以为学生提供更有效的学习工具,并推动人工智能在科学研究中的应用。未来,OMEGA基准可能成为评估和提升LLMs数学能力的重要标准。
📄 摘要(原文)
Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.