Know When to Explore: Difficulty-Aware Certainty as a Guide for LLM Reinforcement Learning
作者: Ang Li, Zhihang Yuan, Yang Zhang, Shouda Liu, Yisen Wang
分类: cs.AI
发布日期: 2025-08-29
💡 一句话要点
提出困难感知自信引导探索以优化LLM强化学习
🎯 匹配领域: 支柱二:RL算法与架构 (RL & Architecture) 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 强化学习 大型语言模型 推理能力 困难感知 自信引导 探索与利用 数学推理 动态调整
📋 核心要点
- 现有的强化学习方法依赖稀疏的奖励信号,无法有效指导模型的推理过程,导致学习效率低下。
- 本文提出DACE算法,通过在线评估任务难度,动态调整探索与利用的平衡,优化学习过程。
- 在数学推理基准测试中,DACE显著提高了模型的准确性和鲁棒性,验证了其有效性。
📝 摘要(中文)
基于可验证反馈的强化学习(RLVF)已成为增强大型语言模型(LLMs)推理能力的关键技术。然而,现有方法依赖稀疏的基于结果的奖励,无法提供对推理过程的细粒度指导,限制了学习效率。为了解决这一问题,本文提出了困难感知自信引导探索(DACE),通过在线评估任务难度来动态平衡探索与利用的权衡。DACE在困难任务中惩罚高自信以鼓励探索,而在简单任务中则奖励高自信以提高学习效率。实验结果表明,DACE在数学推理基准测试中显著优于强基线,验证了该方法在有效探索与精度之间的良好平衡。
🔬 方法详解
问题定义:本文旨在解决现有强化学习方法在推理过程中的指导不足,导致模型无法有效区分高质量与低效率的解决方案。
核心思路:DACE算法利用LLM的自信度与任务难度之间的关联,动态调整探索与利用的权衡,以提高学习效率。
技术框架:DACE的整体架构包括任务难度评估模块和内在奖励调节模块。前者根据策略的成功率在线评估任务难度,后者根据难度调整奖励信号。
关键创新:DACE的核心创新在于引入了困难感知自信的概念,通过动态调整奖励机制来优化探索过程,与传统方法相比,能够更有效地引导模型学习。
关键设计:DACE设计了特定的奖励函数,在困难任务中惩罚高自信,在简单任务中奖励高自信,从而实现了对学习过程的有效调控。具体参数设置和网络结构细节在实验部分进行了详细描述。
📊 实验亮点
在数学推理基准测试(AIME, MATH)中,DACE显著超越了多个强基线,模型准确性提升幅度达到XX%,并在计算资源扩展时表现出更强的鲁棒性,验证了其在探索与精度之间的优良平衡。
🎯 应用场景
该研究的潜在应用领域包括教育、金融和科学研究等需要高效推理的场景。通过优化LLM的学习过程,DACE能够在各种复杂任务中提供更高的准确性和可靠性,未来可能推动智能助手和自动化决策系统的发展。
📄 摘要(原文)
Reinforcement Learning with Verifiable Feedback (RLVF) has become a key technique for enhancing the reasoning abilities of Large Language Models (LLMs). However, its reliance on sparse, outcome based rewards, which only indicate if a final answer is correct or not, fails to provide granular guidance on the reasoning process itself. This limitation hinders efficient learning, as the model cannot distinguish between high quality and inefficient solutions, nor can it learn effectively from different types of failures. To address this, we observe that an LLMs self-certainty often correlates with task difficulty and solution quality. We introduce Difficulty Aware Certainty guided Exploration (DACE), a novel RL algorithm that leverages this insight to dynamically balance the exploration exploitation trade-off. DACE assesses task difficulty online based on the policys success rate. It then uses this signal to modulate an intrinsic reward: for difficult tasks where the model is struggling, DACE encourages exploration by penalizing high certainty; for easier tasks, it encourages learning efficiency by rewarding high certainty. Experiments on challenging mathematical reasoning benchmarks (AIME, MATH) show that DACE significantly outperforms strong baselines. The DACE-trained models not only achieve higher accuracy but also demonstrate more robust performance when scaling test-time compute, validating that our adaptive approach fosters effective exploration without sacrificing precision.