Thinking About Thinking: SAGE-nano's Inverse Reasoning for Self-Aware Language Models
作者: Basab Jha, Firoj Paudel, Ujjwal Puri, Zhang Yuting, Choi Donghyuk, Wang Junhao
分类: cs.AI, cs.CL, cs.LG
发布日期: 2025-06-30
备注: 19 pages, 2 figures, 9 tables
💡 一句话要点
提出逆向推理框架以提升语言模型的自我解释能力
🎯 匹配领域: 支柱九:具身大模型 (Embodied Foundation Models)
关键词: 逆向推理 自我解释 语言模型 推理透明度 元认知结构 人工智能安全 科学发现
📋 核心要点
- 现有的推理方法往往缺乏透明度,导致语言模型的决策过程难以理解。
- 本文提出逆向推理框架,使语言模型能够反思和解释其推理过程,提升可解释性。
- 实验结果显示,SAGE-nano在推理准确性和解释质量上均优于现有模型,具有显著提升。
📝 摘要(中文)
大型语言模型(LLMs)在复杂推理任务中表现出色,但其决策过程仍然较为黑箱化。本文提出了一种名为逆向推理的新范式,使LLMs能够事后分解并解释其推理链。我们在SAGE-nano模型中应用了这一方法,该模型拥有40亿参数,采用了元认知结构,通过注意力机制反思主要决策点并生成推理选择的解释。通过对逻辑推理难题、数学问题和伦理困境的全面测试,SAGE-nano在推理准确性和解释质量上均表现优异,接近于Claude-3.5 Sonnet和GPT-4o等模型。我们的贡献包括:首个针对LLM自我反思的逆向推理框架、反向注意力流的元学习框架、推理透明度的综合评估框架,以及证据表明逆向推理的增加提升了可解释性和推理性能。
🔬 方法详解
问题定义:本文旨在解决大型语言模型在推理过程中缺乏透明性的问题,现有的推理方法往往无法清晰解释模型的决策过程。
核心思路:提出逆向推理的概念,使模型能够事后分析其推理链,识别关键决策点并生成解释,从而提高可解释性。
技术框架:SAGE-nano模型采用了一个元认知结构,通过注意力机制反向流动,识别主要决策点。整体流程包括输入文本、推理链生成、逆向分析和解释生成四个主要模块。
关键创新:首次建立了LLM自我反思的逆向推理框架,显著区别于传统的前向推理方法,提供了对推理过程的深刻洞察。
关键设计:在模型设计中,采用了特定的参数设置和损失函数,以优化逆向推理的效果,同时确保生成的解释具有高质量和可读性。具体的网络结构和注意力机制设计也经过精心调整,以支持反向推理的需求。
📊 实验亮点
实验结果显示,SAGE-nano在AQUA-RAT数据集上的推理准确率达到74.6%,而解释质量的人工偏好评分高达92.1%。这些结果表明,SAGE-nano在推理性能和解释能力上均接近于Claude-3.5 Sonnet和GPT-4o等先进模型,展示了显著的提升。
🎯 应用场景
该研究的潜在应用领域包括教育、AI安全和科学发现等。通过提升语言模型的可解释性,研究可以帮助用户更好地理解模型的决策过程,从而在实际应用中增强信任度和安全性。
📄 摘要(原文)
Large Language Models (LLMs) have demonstrated remarkable capabilities at solving complex reasoning tasks with Chain-of-Thought (CoT) prompting, but their decision-making processes remain somewhat blackbox. We introduce textbfinverse reasoning, a novel paradigm enabling LLMs to decompose and explain their own reasoning chains post-hoc. Our approach, used in SAGE-nano, a 4-billion-parameter reasoning model, employs a metacognitive structure that reflects back via attention processes to identify major decision points and generate explanations of reasoning choices. While typical CoT approaches are directed towards forward reasoning generation, inverse reasoning provides insight into why specific reasoning chains were selected over others. Through thorough testing of logical reasoning puzzles, math problems and ethical dilemmas from AQUA-RAT, CommonsenseQA, and customized benchmarks, we demonstrate that SAGE-nano is at the cutting edge both on reasoning accuracy (74.6% on AQUA-RAT) and explanation quality (92.1% human preference score) for its task, and offers performance almost on par with models like Claude-3.5 Sonnet or GPT-4o. Our contributions are: (i) the first rigorous framework for LLM self-reflection via inverse reasoning, (ii) a novel metalearning framework to reverse the attention flow, (iii) comprehensive evaluation frameworks for reasoning transparency, and (iv) evidence that increasing reasoning using inverse reasoning improves interpretability along with reasoning performance. Our work creates new avenues for transparent AI systems and closes significant gaps in AI safety, education, and scientific discovery.